Extensions 1→N→G→Q→1 with N=Dic25 and Q=C22

Direct product G=N×Q with N=Dic25 and Q=C22
dρLabelID
C22×Dic25400C2^2xDic25400,43

Semidirect products G=N:Q with N=Dic25 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic251C22 = D4×D25φ: C22/C2C2 ⊆ Out Dic251004+Dic25:1C2^2400,39
Dic252C22 = C2×C25⋊D4φ: C22/C2C2 ⊆ Out Dic25200Dic25:2C2^2400,44
Dic253C22 = C2×C4×D25φ: trivial image200Dic25:3C2^2400,36

Non-split extensions G=N.Q with N=Dic25 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic25.1C22 = C2×Dic50φ: C22/C2C2 ⊆ Out Dic25400Dic25.1C2^2400,35
Dic25.2C22 = D1005C2φ: C22/C2C2 ⊆ Out Dic252002Dic25.2C2^2400,38
Dic25.3C22 = D42D25φ: C22/C2C2 ⊆ Out Dic252004-Dic25.3C2^2400,40
Dic25.4C22 = Q8×D25φ: C22/C2C2 ⊆ Out Dic252004-Dic25.4C2^2400,41
Dic25.5C22 = D25⋊C8φ: C22/C2C2 ⊆ Out Dic252004Dic25.5C2^2400,28
Dic25.6C22 = C100.C4φ: C22/C2C2 ⊆ Out Dic252004Dic25.6C2^2400,29
Dic25.7C22 = C2×C25⋊C8φ: C22/C2C2 ⊆ Out Dic25400Dic25.7C2^2400,32
Dic25.8C22 = C25⋊M4(2)φ: C22/C2C2 ⊆ Out Dic252004-Dic25.8C2^2400,33
Dic25.9C22 = Q82D25φ: trivial image2004+Dic25.9C2^2400,42

׿
×
𝔽